

The book was found

Introduction To Experimental Biophysics, Second Edition: Biological Methods For Physical Scientists (Foundations Of Biochemistry And Biophysics)

Synopsis

Praise for the First Edition "essential reading for any physical scientist who is interested in performing biological research." Contemporary Physics "an ambitious text". Each chapter contains protocols and the conceptual reasoning behind them, which is often useful to physicists performing biological experiments for the first time." Physics Today This fully updated and expanded text is the best starting point for any student or researcher in the physical sciences to gain firm grounding in the techniques employed in molecular biophysics and quantitative biology. It includes brand new chapters on gene expression techniques, advanced techniques in biological light microscopy (super-resolution, two-photon, and fluorescence lifetime imaging), holography, and gold nanoparticles used in medicine. The author shares invaluable practical tips and insider knowledge to simplify potentially confusing techniques. The reader is guided through easy-to-follow examples carried out from start to finish with practical tips and insider knowledge. The emphasis is on building comfort with getting hands wet with basic methods, and finally understanding when and how to apply or adapt them to address different questions. Jay L. Nadeau is scientific researcher and head of the Biomedical Engineering in Advanced Applications of Quantum, Oscillatory, and Nanotechnological Systems (BEAAQONS) lab at Caltech, and was previously Associate Professor of Biomedical Engineering and Physics at McGill University.

Book Information

Series: Foundations of Biochemistry and Biophysics

Paperback: 778 pages

Publisher: CRC Press; 2 edition (October 4, 2017)

Language: English

ISBN-10: 1498799590

ISBN-13: 978-1498799591

Shipping Weight: 1.1 pounds (View shipping rates and policies)

Average Customer Review: Be the first to review this item

Best Sellers Rank: #741,300 in Books (See Top 100 in Books) #132 in Books > Textbooks > Medicine & Health Sciences > Medicine > Biotechnology #266 in Books > Engineering & Transportation > Engineering > Bioengineering > Biomedical Engineering #560 in Books > Engineering & Transportation > Engineering > Bioengineering > Biotechnology

Customer Reviews

"I was really very surprised how much I want to purchase this text. Our lab is engaged in research that spans multiple disciplines, from genetic engineering, biomaterials, immunotherapy, and tissue engineering. Hence the "tool box" that members of my group have to develop is broad but requires detail. This text by Nadeau amazingly touches on the many if not all the techniques a modern molecular biology/bioengineering researcher needs." James D. Bryers, Professor of Bioengineering, University of Washington "This book will prove to be extremely useful and motivating for any scientist, student or newcomer interested in applying concepts, methods and techniques of the physical and chemical sciences to fundamental problems in biology and medicine. It clearly enlightens the need of combining interdisciplinary approaches to tackle the main challenges in life sciences. The main strength of this book is that it provides not only some description of basic methods and techniques, but also gives access to more advanced approaches and to more sophisticated equipment. It brings physics and chemistry to biologists and physicians, as well as biology and medicine to physicists and chemists." Alain Arneodo, Directeur de Recherche, CNRS

Jay L. Nadeau is a research professor in the Graduate Aerospace Laboratories (GALCIT) at the California Institute of Technology. Prior to Caltech, she was associate professor of biomedical engineering and physics at McGill University (2004–2015). Her research interests include nanoparticles, fluorescence imaging, and development of instrumentation for the detection of life elsewhere in the solar system. She has published over 70 papers on topics ranging from theoretical condensed matter physics to experimental neurobiology to the development of anticancer drugs and, in the process, has used almost every technique described in this book. Her work has been featured in *New Scientist*, *Highlights in Chemical Biology*, *Radio Canada*, *Les Annales Lumières*, *Le Guide des Tendances*, and in educational displays in schools and museums. Her research group features chemists, microbiologists, roboticists, physicists, and physician-scientists, all learning from each other and hoping to speak each other's language. A believer in bringing biology to physicists as well as physics to biologists, she has created two graduate-level courses: methods in molecular biology for physical scientists and mathematical cellular physiology. She has also taught pharmacology in the medical school and was one of the pioneers in the establishment of multiple mini-interviews for medical school admission. She retains an adjunct position at McGill, and has collaborators in industry and academia in the United States, Europe, Australia, and Japan. She has given several dozen invited talks at meetings of the American Chemical Society, American Geophysical Union, the International Society for Optics

and Photonics (SPIE), the Committee on Space Research, the American Association of Physics Teachers (AAPT), and many others. Before McGill, she was a member of the Jet Propulsion Laboratory's Center for Life Detection, and previous to that a Burroughs-Wellcome postdoctoral scholar in the laboratory of Henry A. Lester at Caltech. She received her PhD in physics from the University of Minnesota in 1996.

[Download to continue reading...](#)

Introduction to Experimental Biophysics, Second Edition: Biological Methods for Physical Scientists (Foundations of Biochemistry and Biophysics) Quantitative Understanding of Biosystems: An Introduction to Biophysics (Foundations of Biochemistry and Biophysics) Ace Biochemistry!: The EASY Guide to Ace Biochemistry: (Biochemistry Study Guide, Biochemistry Review) Biomolecular Thermodynamics: From Theory to Application (Foundations of Biochemistry and Biophysics) Experimental Structural Dynamics: An Introduction to Experimental Methods of Characterizing Vibrating Structures Applied Biophysics of Activated Water: The Physical Properties, Biological Effects and Medical Applications of MRET Activated Water Experimental Psychology (PSY 301 Introduction to Experimental Psychology) Entropy-Driven Processes in Biology: Polymerization of Tobacco Mosaic Virus Protein and Similar Reactions (Molecular Biology, Biochemistry and Biophysics Molekularbiologie, Biochemie und Biophysik) Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians (Biological Diversity Handbook) Experimental and Quasi-Experimental Designs for Generalized Causal Inference Sterling Test Prep MCAT Practice Tests: Chemical & Physical + Biological & Biochemical Foundations Marks' Basic Medical Biochemistry (Lieberman, Marks's Basic Medical Biochemistry) Biochemistry (BIOCHEMISTRY (VOET)) Medical Biochemistry: With STUDENT CONSULT Online Access, 3e (Medial Biochemistry) Drug Targeting Technology: Physical Chemical Biological Methods (Drugs and the Pharmaceutical Sciences) Methods in Molecular Biophysics: Structure, Dynamics, Function for Biology and Medicine Fractals in Molecular Biophysics (Topics in Physical Chemistry) Computational Approaches to Protein Dynamics: From Quantum to Coarse-Grained Methods (Series in Computational Biophysics) Numerical Methods for Engineers and Scientists Using MATLAB® Second Edition Numerical Methods for Engineers and Scientists, Second Edition,

[Contact Us](#)

[DMCA](#)

[Privacy](#)

FAQ & Help